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A first-order invariant Einstein-Cartan structure is a Lagrangian structure 
on a differential manifold defined by a generally invariant Lagrangian 
depending on a metric field, a connection field, and the first derivatives of 
these fields. Moreover, it is assumed that the metric and connection fields 
satisfy the so-called compatibility condition. In this paper the problem of 
finding all such invariant Einstein-Cartan structures is discussed. It is shown 
that each Lagrangian of these structures depends only on certain tensors 
constructed from the metric and the connection fields, which means that all 
the Lagrangians can be described within the framework of the classical theory 
of invariants. The maximal number of functionally independent Lagrangians 
is determined as a function of the dimension of the underlying manifold. 

1. INTRODUCTION 

A first-order invariant Einstein-Caftan structure is a Lagrangian struc- 
ture (Trautman, 1972; Krupka and Trautman, 1974) defined by the generally 
invariant Lagrangian depending on a metric field, a connection field, and the 
first derivatives of these fields. Examples of these structures are well known 
from various considerations concerning the internal spin of matter as the 
source of  the gravitational field (Trautman, 1976; Kopczynski, 1975) and 
from the literature on the variational principles of the general relativity theory 
(Rund and Lovelock, 1972; Rund, 1967). 

Krupka and Trautman (Krupka and Trautman, 1974; Krupka, 1974) 
have shown that every rth-order invariant Lagrangian structure is uniquely 
determined by an L~T-invariant Lagrangian defined on a differential manifold 
endowed with an action of the differential group L~ r. It has also become clear 
that all such invariant Lagrangians are, at least in theory, computable 
(Krupka, 1976; Krupka, to appear; Novotn3?, to appear). In this paper we 
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apply the same method to the problem of  classifying the first-order invariant 
Einstein-Caftan structures. 

Each first-order Lagrangian depending on a metric and a connection field 
is defined on an open subset of the manifold T, 1Q of one-jets with source at 
the origin 0 of  the n-dimensional real Euclidean space R" and target in the 
manifold Q = (R"* C)R ~*) x R ~s, where R~*C)R ~* denotes the space of  
second-order, symmetric covariant tensors on R" and the factor R "a cor- 
responds to the elements of the connection. The Lie group L,  a of all invertible 
three-jets with source and target at 0 ~ R" acts on the manifold T,1Q in a 
well-known manner. More detailed general information on this action and 
the theory of  jets can be found in (Krupka, 1974 and Ehresmann, 1953). The 
corresponding L~-invariant functions are in fact identical to the Lagrangians 
of  the considered Lagrangian structures. 

The second section of this paper is devoted to the definition of suitable 
local coordinates on the manifold T,~IQ and to a coordinate description of  
the action of  the group L~ 8 on T~ 1Q. 

In the third section we consider the Lie algebra I,~3(T,~ ~ Q) of  fundamental 
vector fields on T,~IQ defined by the group L,  8. We find a system of  vector fields 
generating the Lie algebra l,~3(T,~ ~ Q) and characterize the rank of I,~3(T, ~ Q) at 
its maximal points. The rank of a Lie algebra of fundamental vector fields is 
the important characteristic that determines the maximal number of function- 
ally independent integral functions of this algebra (Hermann, 1968). We reach 
the conclusion that the problem of  finding all L,a-invariant functions on T,~Q 
can be reduced to the problem of finding all GL,-invariant functions depending 
on some tensors, i.e., to the problem of the classical theory of  GL,-invariants. 
This problem can be solved with the help of  the algebraic theory of  invariants 
(Gurevi6, 1948; Dieudonn6 and Carrell, 1971). The second result obtained 
is the maximal number of functionally independent first-order invariant 
Lagrangians depending on a metric and a connection. 

In the fourth section, these results are applied to the first-order invariant 
Einstein-Cartan structures. In particular, the maximal number of functionally 
independent Lagrangians of these structures on n-dimensional manifolds is 
determined which is equal to 0, 9, 57, 194 for n = 1, 2, 3, 4, respectively. 

The last section is devoted to the study of some special classes of  the 
first-order invariant Lagrangians depending on a metric and a connection. 
In a special case of Lagrangians, our results are in agreement with those of  
Rund (1967). 

2. FUNDAMENTAL GEOMETRICAL STRUCTURES 

Let us consider the manifolds Q and T,~Q introduced in the first section 
and define in terms of some coordinates the standard action of  the group L,  3 
on the manifold T,~IQ [for the generalities, see (Krupka, 1974)]. 
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Let g,j, I~}~ be the canonical coordinates on Q, and let gm P}~, g~i,~, P].~.,, 
be the associated canonical coordinates on the manifold T, 1 Q. In accordance 
with the general theory, each first-order generally invariant Lagrangian 
depending on a metric field and a connection field is a function of the variables 

Denote by aj ~, a}~, a~,.~z the canonical coordinates on L,  a. The group L~ 2 
acts on the manifold Q by 

g~k = b~mb~gm,~ (2.1) 

P~ = F'~a,~bk'~b] ' - b~'b~a,~ 

where b j  is defined by aj~bj = 3~ ~ and 3~ ~ is the Kronecker symbol. The 
group action of L.  8 on T . I Q ,  associated with this action, is given by (2.1) 
and by 

g~r~., = b~mb~'~bl~'gm,~.v - b,~mbl~'b~Cb~'~(a~cgm. + a~gc,n) 
m i S n p m i s n p F~z,q F,~,..a~ b~ b~ b~ + (2.2) = F~am~bq bk b~ 

- V'~am~bq~a~a(b~bb~b~ ~ + b~'b~b~ ~) 

+ b/b~%q~b~O(ah~a~ + a~a~a) - b/b~abqga~ar 

As usual, if a system of numbers g,-, F}~, g~,~, F}~,t denotes the coordinates 
of a point j o l f ~  T ~ Q  and if a~ i, ~ a~, a ~  are the coordinates of an element 
Aaa ~ L~ a, then g~, F}~, g~i.~, F~,~ is the system of the coordinates of the 
transformed point j0aa .jo~f ~ T~ ~ Q. 

Let us consider a subset W = T,~Q formed by the points, where 
det (g~) ve 0, and let us introduce the functions g~ on W by the relation 
g~g~  = 3~. On Wa  new coordinate system can be introduced by the relations 

g~ = g~ 
l my Wff  = g~:e = g~Y,~ + [~m~cg + F~mtcg ~m 

s '~  = r~.~ + r ,~ 
r '  ~ ~ ~ ~ (2 .3)  R[tj = Fj~,i - ,~,j + - 

- ( r ~  ' - r ~ ) r , ,  ( r ~ -  ~ - r . ) p ~  

r~,~ + + + r~;,~) F i k , ~  q -  ~(F.,~ + 

It can easily be shown that the inverse transformation is 
g*~ = g~ 

P}~ = �89 + S le )  

gi~,e = W~y _ �89 + S ~ )  - �89 + S~:) 
(2.4) 1 l l 1 1 l = Vi~) + ~ ( R ~  + R ~  

1 l s l s s 1 l s + -~-~(2Th/~ 3 T ~ S ~  + -- T~sT~g - 3T}~Sig 
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and that the following identities hold. 

R~kz + R ~  + R~u = V~z + V~: + V$u - Ti~rijJ n _ T , T ~  ~ - T]~Ti; ~ 

In these coordinates, the action (2.1), (2.2) o f L ,  ~ on T,~IQ is expressed by 

~ t i  ~ amian tgran  

W i ' =  

T'j~ = 

Si~ = 

R i k l  -~" 

f ~ k l  ~-  

a,,t a,~J b~ p W ~ '~ 

a ~b ~b PT m m j Ir n~ 

a ~b ~b ~S m - 2bgbk~a~ m J k np 

a it, n b Pb aRm ra c, j  k l npq 

amt b j'~ bkP bzq Vmpq 

Smat + ra ~L~mlr~ ihsl.lul t.,jnhukPl-Tm,..,nps + 2bt~bj"bk~(Sm~a~ -F ns ra~ S ~ p a m n )  

p n d c i m b m b m b - 4b~ bb bj bz am (Sg,a~a + Sgaa~v + S~ca~,a) 

a t a n i h �9 a~gala) - 6bJbjabzga~al] + 4bjbyablgbnb(a~aba~i + br ga + 

(2.5) 

These are the desired formulas. 

3. INVARIANT LAGRANGIANS 

Let G be a Lie group and M a differential manifold; let the map 
G x M ~ (g, x) -+ g- x ~ M define an action of G on M. Recall that a real 
function f defined on M is said to be G-invariant (or just invariant) if 
f ( g .  x )  = f ( x )  for all x ~ M and g ~ G. 

Our problem is to characterize all L,3-invariant functions defined on the 
manifold T, 1 Q. The general theory tells us that each L,3-invariant function f 
satisfies the complete system of differential identities 

E j ( f )  = 0, E~k(f) = 0, E~kt(f)  = 0 (3.1) 

where E j ,  E~ k, E~ ~ are the fundamental vector fields on T~ 1 Q, defined by the 
action (2.5) of the group L~ 3 on T~ 1Q. Equations (3.1) form a system of linear, 
homogeneous, first-order partial differential equations for the function f .  
The classical Frobenius theorem (Hermann, 1968) ensures the existence of 
the nontrivial solutions of (3.1) and enables us to determine the maximal 
number of functionally independent solutions. 

Let us construct the vector fields ~.~',J, -.=l~, ~'~Jk~ (3.1). By a standard 
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differentiation procedure we easily obtain from (2.5) that in the local co- 
ordinates gU, W~,  T}~, S}~, RI~e, Vu~, UI~ on W, it holds 

a 0 - u 0 ~ a 

a a a O 

a o a 
+ v~,-g-~, - 2vg~, ~v'~, v ~  av~e 

0 
as~, 

a 

(3.2) 

These vector fields obviously span the Lie algebra/~a(T,~I Q) on W. 
We can now determine the rank of &a(T,~Q) at its maximal points, 

i.e., at points of the manifold TnXQ where the number of linearly independent 
fundamental vector fields is maximal. To do this, we define new local co- 
ordinates R,jk~ on W by the relation 

and put 
Rukz = g,mR~, 

E,v = gevE, ~ 

The system (3.2) of fundamental vector fields on W is thus equivalent to the 
system 

~ + = 2  ~ a - . v  Og~,----3 + �89 + 2gk~W~J3r ' -- gcrW~' - ge,~W~') OWg' 

gj,TekSy ~(gJrTakS~ + -- 2gBvT~k 2ge'~T~) aT~  

- �89 + g,,~Rvjka + gj~R~a + gj,~Rfvk~ 

a 
+ 2gavRuk~ + 2ga~Rukv)�9 

gj~Vj~a8 ~ - 2gjvV~ B -~(gtvVjkB3~ + - 2gj~VvkB 

(3.3) - g~Vjk,~ -- ge,~VJk~) aV}~r 
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~ = ~(2g~WB 8~ - 2g~w~J~ ~ - gB~W~ + gB~W~9 ~wg 

+ �89 ~ -- ~ gy~T, k3 r _ 2gBrT~ ~ + 2gB~T~r~ ) O 
aT~k 

- �89 - gi~RvjkB + gj~R~kB -- gj~R~yk~ 

0 
+ 2gB~R~i~ -- 2gB~R~i~')OR~jkz 

+ 1 l i l i ~( g~  V ~ - gyaV~a3~ - 2g~rVau ~ + 2gy, V ~ a  

0 
' (3 .3 )  - g ~ V ~  + g ~ V ~ )  ~ V ~  

8 

8 

The rank of this system is defined as the rank of the matrix formed by the 
coefficients in (3.3) at the base vector fields 

0 0 0 8 0 0 0 

The form of the vector fields (3.3) shows that the rank of this matrix at its 
maximal points is given by 

( n + 2 )  
r n = r ' ~ + � 8 9  1 ) + � 8 9  1 ) + n  3 

where r~ is the rank of the matrix 

0 
8R~jj-~' i < j 

> 

Similarly as in (Krupka, 1976) one can show that the determinant det (An) ~ 0 
and thus at some point of TnlQ,  r /  = (�89 - 1). The rank of the system 
(3.3) or (3.2) of fundamental vector fields, i.e., the rank of the Lie algebra 
lna(Tn 1 Q) at its maximal points, is thus equal to 

rn = -~n2(n 2 + 6n + 11) 

According to the general theory of vector field systems (Hermann, 1968), the 
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basis of integral functions of the Lie algebra l,3(T, ~ Q) includes exactly 

M~ = dimT,~Q - r ,  = ~n(5n ~ + 3n 2 - 5n + 3) 

functions. 
Our results can be summarized as follows. 

Theorem. Each generally invariant Lagrangian L depending on a 
metric field, a connection field, and the first derivatives of these fields 
satisfies the complete system of differential identities 

E~a(L) = 0, E~'(L) = 0, E~'~ = 0 (3.4) 

where E,  a, E~,  E~ re are given by (3.2). There exist at most 

M ~ = ~ n ( 5 n  z + 3n z -  5n + 3) 

functionally independent generally invariant Lagrangians. 

Note that the form of the vector fields (3.2) implies that each Lagrangian 
of the considered class depends only on the coordinates g ' ,  Wg, ~ z " Tt~, R~j~, VIjk. 
These coordinates transform, under the transformations from L~ a as tensors 
of GL~, by (2.5). We can therefore conclude that the problem of finding all 
L~%invariant Lagrangians on W = T~aQ is reduced to a problem of finding 
all invariants of the tensors g~J, W~ j, T}k, ~ ' R,jk, V,j~, i.e., to a problem of the 
classical invariant theory (Gurevi6, 1948; Dieudonn6 and Carrell, 1971). 

4. EINSTEIN-CARTAN STRUCTURES 

Let us discuss the possible invariant Lagrangians for the Einstein-Cartan 
theories of gravitation. The underlying structure for these theories is a four- 
dimensional differential manifold with a metric tensor field and a linear 
connection compatible with the metric. The connection is not symmetric, in 
general. Recall that a linear connection with the components P}~ is said to be 
compatible with the metric with the components g~j if 

g~j:k = g~j.k - I'~gsj - r~g~s = 0 (4.1) 

i.e., if the covariant derivative of g~j by I'}~ vanishes. 
From the point of view of the variational theory the condition (4.1) 

means that a first-order Lagrangian defining an Einstein-Cartan structure is 
independent of the coordinates g~j,~ or, in our coordinates (2.3), (2.4), inde- 
pendent of  W~. Each such generally invariant Lagrangian is thus defined on 
a subset of the manifold P = (R ~* O R ~*) x T,~IR ~,  where TnlR '~3 is the 
manifold of one-jets with source at 0 s R" and target in R ~a. The natural 
action of L ,  a on P is immediately seen from (2.5). 

The fundamental vector fields on P generated by this action can be 
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obtained easily. In terms of the coordinates g~J, TJk, S}~, RJez, V}k~, Ulk~ on P 
these vector fields are given by 

Z~ B = 2g 'B + T~ ~--~-- 2T~k ~ + R~, ~8R}~ - R~,  8R~k, 

t a a a V~k~ a 

(4.2) 

O 

The rank of the Lie algebra I~sP is given by 

r .  = ~n2(n 2 + 6n + 11) 

This can be checked in the same way as in the preceding case. 
We have thus arrived at the following conclusions. 

Theorem. Each generally invariant Lagrangian defining an Einstein- 
Cartan structure satisfies the complete system of differential identities 
(3.4), where E~ a, E~ ~, Eft ~ are given by (4.2). There exist at most 

M ~ = d i m P - r ~ = ~ n ( 5 n  a - 8 n +  3) 

functionally independent generally invariant Lagrangians. 

In particular, each first-order L~a-invariant Lagrangian of an Einstein- 
Cartan structure depends only on the metric tensor, the curvature and torsion 
tensor, and the covariant derivative of the torsion tensor. 

Consider for example the case n = 2. Then M~ = 9 and it should not be 
so difficult to obtain a basis of L~a-invariant functions without a computer. 
In fact, it is directly proved that a basis of the corresponding generally 
invariant Lagrangians can be taken as 

L~ = g~R~m~ 
L 2  ~ f f ' l c I R r a  R n ~" `5 `5 lcmi lnJ 

Z3 ~iS~klDm t,n 
= `5 `5 ~XlemilXjnl 

L4 = g~Sgel ymikR~j, 

L5 = gt~V,~j 

L6 = gttg~Zl'm V~,  

L7 = g~Sgkl V~mtk V~lj 
L a  ~ j ~ k t  R m V n ,S ,S tkm Jln 

L9 "~JT~ T ' ,5 U tc j 
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5. SPECIAL CLASSES OF LAGRANGIANS 

In this section we discuss some special classes of the first-order generally 
invariant Lagrangians depending on a metric field and a connection field. 

(a) L(g~j, F}k, I'}~a), I'}~ = I'~j. Putting T}k = 0 and V}k~ = 0 we obtain 
from (4.2) that the corresponding fundamental vector fields are of the form 

0 
~-~" = OS~----, (5.1)  

O U ~  

The rank of the Lie algebra I~8[(R ~" 63 R ~') • Rm], m = (�89 + 1), is 
given by 

r~ = ~n2(n z + 6n  + 11) 

and there exist at most 

Mn = ~n(2n 3 - 5n + 3) 

functionally independent Lagrangians. 
We note that this class of Lagrangians was investigated by Rund. It can 

be seen by a direct calculation in the canonical coordinates that our funda- 
mental vector-field system (5.1) is equivalent to his first, second, and third 
invariance identities (Rund, 1967). 

(b) L(g~j, F}k, P~ka), where r ~  is a metric connection. Consider the case 
of the metric connection. Then 

r}~ = 1,,~mr -~5 ~.gmj,~: + grak,t -- gs~.m) (5.2) 

and 1~}k,z is expressed by means of the coordinates g~j, g~j,k, g~j,kz. This means 
that the corresponding generally invariant Lagrangians are defined on the 
manifold T,~2(R '~~ (3 R"*) of two-jets with source at 0 ~ R" and target in 
R "~ (3 R " .  In (2.3) put W~ = 0, T}ko = 0, V}~ = 0 and introduce new local 
coordinates R~jez, Utjkz, A~j~ by 

R m Rijkl = g~m jkl 

U~jk, U m : gira jkl 

A~k 1 m = -~g~S~ 

On comparing these coordinates with those on Tn2(R '~" �9 R "~ introduced by 
Krupka (to appear), we can conclude that the converse is also true: Each 
second-order generally invariant Lagrangian L(g~j,g~j,~:,g~j,~) defines a 
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generally invariant Lagrangian L(g~s , F~k, Fl~a), where (5.2) holds. The 
generally invariant Lagrangians L(g~j, g~j,k, g~s.k~) have been characterized by 
Krupka (to appear; 1976). 

(c) L(g~j, g~j,k, Flk). The Lagrangians of this type are defined on the 
manifold T . I ( R " * G  R ~') x R ~8. Each of these Lagrangians satisfies the 
system of differential identities 

EoffL) = 0, - ~ ( L )  = 0 (5.3) 

where 

E~ n = 2g 'a ~ + 2 W~ j 0 W~ --- -7  - ~ + T,~ ~ - 2T~ 0/n ~ 

(5.4) 
0 ag,  = _ _  

and the local coordinates g~J, w~J,, g, _j~,T~ S~ are defined by the first four relations 
of (2.3). 

To determine the rank of this system, we introduce new local coordinates 

Qtj~ = g~mgj. W ~  ~ 

and put 
E.r = ga~.a a 

-~* = �89 + Z.~), E.-, = �89 E~) g y  

As before, the rank of the vector-field system ~ar, ~' + =at,-- E~ r is given by 

r .  = r'. + �89 + 1) + �89 + 1) 

where r~ is the rank of the matrix 

I - -  < y  An 

0 
i < j  aQ~j : 

> 

Since det A. does not vanish identically, we have at somepointsr" = (�89 - 1). 
Consequently, there exist at most 

M .  = �89 2n 2 - n + 1) 

functionally independent generally invariant Lagrangians of the considered 
class. 
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In the case of the symmetric connection, T}e = 0 and the system (5.4) is 
reduced to 

E. B= 2g ~ " ~  + 2W~ j ~ W~" ~ 
Og ~ ~ W~ s ~ W~ j 

z ~  = as~--~ 

The rank of this system remains unchanged and the maximal number of 
functionally independent invariants is given by 

M , = � 8 9  2 +  1) 

(d) L(g~j, I'~k). The Lagrangians of this class are defined on the manifold 
(R " (3 R " )  • R "3. Each of these Lagrangians satisfies (5.3), where 

-~, ag,----- ~ ~ -- 2T~  ~--~-B~ 

(5.5) 
0 

eS~, 

and the local coordinates g% TJ~, S~k are defined by the first, third, and fourth 
formulas of (2.3). 

To show the independence of this system of differential operators, we 
introduce the local coordinates 

Pis~ = g~mT~ 

and proceed in the same way as in the preceding case. Since the rank of the 
system (5.5) is equal to 

r, = �89 + 3) 

we can assert that there exist at most 

M ~ = � 8 9  1) 2 

functionally independent generally invariant Lagrangians of the considered 
class. 

In the case of the symmetric connection the system (5.5) is reduced to 

0 
E~  = 2g~ agi~ 

O 

Putting 

0 
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we see that  there exist no  nontrivial Lagrangians depending on g~j and 
symmetric  connection Fjk. This result agrees with (Rund,  1967). 
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